Telegram Group & Telegram Channel
🚫 Что делать с пропущенными значениями перед нормализацией или стандартизацией признаков

Пропущенные значения (NaN, пустые ячейки) затрудняют масштабирование данных, потому что статистики вроде среднего, стандартного отклонения или минимума становятся некорректными. Поэтому пропуски нужно обработать до нормализации.

Основные варианты

1️⃣ Импутация (восстановление) пропущенных значений

Простые методы: среднее, медиана, мода.
Продвинутые: KNN, модели на деревьях, многократная импутация (Multiple Imputation).

2️⃣ Удаление строк с пропусками

Допустимо, если доля пропущенных значений очень мала.

3️⃣ Использование моделей, устойчивых к пропускам

Некоторые алгоритмы (например, XGBoost, CatBoost) умеют обрабатывать пропуски без предварительной импутации.

📌 Вывод

Пропуски надо обрабатывать до масштабирования.
Лучший подход — импутация на обучении, затем масштабирование по тем же правилам.
Не смешивайте статистики между train и test — это критично для честной оценки модели.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/980
Create:
Last Update:

🚫 Что делать с пропущенными значениями перед нормализацией или стандартизацией признаков

Пропущенные значения (NaN, пустые ячейки) затрудняют масштабирование данных, потому что статистики вроде среднего, стандартного отклонения или минимума становятся некорректными. Поэтому пропуски нужно обработать до нормализации.

Основные варианты

1️⃣ Импутация (восстановление) пропущенных значений

Простые методы: среднее, медиана, мода.
Продвинутые: KNN, модели на деревьях, многократная импутация (Multiple Imputation).

2️⃣ Удаление строк с пропусками

Допустимо, если доля пропущенных значений очень мала.

3️⃣ Использование моделей, устойчивых к пропускам

Некоторые алгоритмы (например, XGBoost, CatBoost) умеют обрабатывать пропуски без предварительной импутации.

📌 Вывод

Пропуски надо обрабатывать до масштабирования.
Лучший подход — импутация на обучении, затем масштабирование по тем же правилам.
Не смешивайте статистики между train и test — это критично для честной оценки модели.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/980

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA